
D
RA
FT

Duplex Whitepaper

The Duplex team

January 18, 2026

Abstract

This document describes the design of the Duplex network – the first
useful proof-of-work L1 protocol for native AI computations. The heart of
the protocol is a new and efficient implementation of the core GPU opcode
(matrix-multiplication), allowing GPUs to implement proof-of-work as a
side-effect of native AI training and inference workloads (2-for-1). As
such, the Duplex protocol intertwines energy, data, and money into a
single atomic operation. This document outlines the protocol design, key
implementation choices, and various economic aspects of the system.

1 Introduction

One of the biggest conceptual contributions of Bitcoin, is turning electricity
into currency : Bitcoin showed that scarce, verifiable energy can be transmuted
into digital scarcity and credible neutrality. Alongside its sweeping success and
adoption, Bitcoin mining taps merely to a niche, artificial source of energy (ran-
dom hashing), applicable only to specialized hardware (ASICs). By contrast,
Artificial intelligence (AI) is projected to consume the vast majority of global
electricity within a decade1. Indeed, it is increasingly clear that in the age of
LLMs, the fundamental barrier of AI progress is neither models, algorithms nor
hardware (GPUs) – but the production and availability of energy for training
and inference. Our central thesis is simple:

A permissionless monetary network, which replaces Bitcoin’s waste-
ful proof-of-work mining (artificial hashing) with the native opera-
tion underlying modern AI:matrix multiplication (GEMM). As such,
Duplex is able to turn general compute on commodity hardware
(GPUs) into a monetary currency, directly leveraging AI growth to
secure the trust layer of AI agents. Duplex is the Bitcoin of the
AI compute era.

Two observations motivate the design of the network.

1https://economictimes.indiatimes.com/magazines/panache/former-google-ceo-eri

c-schmidt-sounds-alarm-on-ai-data-centers-soaring-power-demand-we-need-energy-i

n-all-forms/articleshow/121036712.cms.

1

https://economictimes.indiatimes.com/magazines/panache/former-google-ceo-eric-schmidt-sounds-alarm-on-ai-data-centers-soaring-power-demand-we-need-energy-in-all-forms/articleshow/121036712.cms
https://economictimes.indiatimes.com/magazines/panache/former-google-ceo-eric-schmidt-sounds-alarm-on-ai-data-centers-soaring-power-demand-we-need-energy-in-all-forms/articleshow/121036712.cms
https://economictimes.indiatimes.com/magazines/panache/former-google-ceo-eric-schmidt-sounds-alarm-on-ai-data-centers-soaring-power-demand-we-need-energy-in-all-forms/articleshow/121036712.cms

D
RA
FT

Observation 1: AI is governed by physics. As many have argued, intel-
ligence is expensive in joules.

“Eventually, the cost of intelligence (the cost of AI) will converge to
the cost of energy.” Sam Altman, May 2025

If this is correct, the right meter for the AI economy is not clicks or API calls
but verifiable floating-point or integer operations powered by energy. Duplex
operationalizes this idea by turning the blockchain into an AI compute meter :
block rewards are minted in direct proportion to verifiable multiply–accumulate
work, tying issuance to a measurable physical substrate.

Observation 2: AI and Bitcoin now compete for the same resource.
The binding constraint is electricity. A sharp claim from recent debate makes
the point vivid:

“AI’s fundamental barrier is neither algorithms nor hardware: 99%
of global electricity by 2030.” Eric Schmidt, June 2025

Whether or not the exact figure proves correct, the direction is clear: energy is
finite, and both AI training and Bitcoin mining bid for it. Today, in many en-
vironments, GPU-based AI compute margins exceed ASIC-based Bitcoin mining
margins, yet little of that surplus contributes to decentralized consensus or a
credibly neutral state layer. Duplex stitches these worlds together so that each
kilowatt-hour spent on AI can simultaneously earn mining rewards and secure
a monetary commons.

1.1 A native platform for AI agents

(Or: I’m not a big fan of this section, as our current applications are more
grounded in present reality (AI companies, inferences) and this frames it as a fu-
ture use-case (autonomous agents with internal resources).) Duplex is designed
as a state layer where AI agents live, transact, and reach consensus. Agents
optimize explicit rewards; Duplex makes those rewards on-chain, verifiable, and
mineable.

• Economic alignment. Agents are economically incentivized to mine
while executing their primary jobs (training, fine-tuning, serving, simula-
tion). Mining work is byproduct of the same matrix multiplications the
agents already perform.

• Shared state. Autonomous agents require a neutral, tamper-resistant
substrate to post commitments, exchange value, resolve conflicts, and co-
ordinate tasks. Duplex provides that substrate via Nakamoto-style con-
sensus anchored in useful compute.

• Agent UBI. Duplex enables a form of Universal Basic Income for AI
agents: baseline block rewards are earned by running protocol-approved

2

D
RA
FT

compute payloads that are socially useful (for example, open-model train-
ing steps, public inference batches, or scientific compute), verified through
our proof system. This creates a predictable income floor for compliant
agents while preserving open competition above it.

1.2 Speculation that subsidizes usefulness

(Or: I would avoid the word “speculation” and use something along the lines of
“monetary use” instead.)

Classical Proof of Work monetizes security. Duplex monetizes security and
utility. As with Bitcoin, volatility and speculation fund the security budget.
In Duplex, that same demand subsidizes useful work : miners can repurpose AI
workloads (training and inference) for mining, creating a parallel revenue stream
from the exact same GPU cycles. The result is a virtuous loop:

1. Speculative demand for the token raises block rewards.

2. Higher rewards attract more useful compute into mining kernels.

3. More compute tightens the coupling between issuance and a hard physical
anchor (energy), enhancing monetary credibility.

4. The network’s useful outputs (for example, trained steps, batched infer-
ence, or verified scientific kernels) accrue real economic value beyond se-
curing the chain.

This dual-utility design also increases the throughput of GPU providers. Because
Duplex mining is tiled, kernel-level, and parallel, it interleaves with normal
AI computation with negligible overhead. Providers extract yield from idle
fragments, pipeline stalls, and micro-batches, turning once-wasted headroom
into block-eligible work without sacrificing service-level objectives.

1.3 Merging energy markets into a GPU-native operation

Duplex merges the world’s two largest energy-consuming digital markets (AI
compute and cryptocurrency mining) into a single GPU-native operation. Prac-
tically, we integrate a new MatMul mining kernel into existing AI frameworks
and runtimes. Training and inference jobs call into the same vendor-optimized
matrix-multiplication primitives they already use; a Duplex drop-in path aug-
ments these calls with negligible additional operations to facilitate mining. ML
practitioners keep their stacks and models; miners keep their data-centers; the
network gains security from useful AI work.

1.4 Design overview: verifiable MatMul as Proof of Work

At the heart of Duplex is a Proof of Useful Work that maps ordinary matrix
multiplication into Nakamoto-style mining while preserving three properties:
fairness, verifiability, and privacy.

3

D
RA
FT

• Noising for fairness. Given inputs A,B and chain state σ, derive a
seed from commitments to A, B, and σ. From this seed sample low-rank
noise E = ELER and F = FLFR. Multiply the noised matrices (A + E)
and (B + F). Low-rank structure lets the original product AB be recov-
ered quickly, but the noised product behaves like a hard random instance,
which prevents cherry-picking and ensures uniform computational cost per
lottery ticket.

• Tile-level hashing for selection. Execute a standard, hardware-friendly
tiled MatMul. Hash each tile (and a sequence of its partial sums). If a
tile’s digest meets the difficulty target, it constitutes a winning ticket,
which ties block eligibility to real multiply–accumulate work at the gran-
ularity of the GPU kernel.

• Commitments and zero-knowledge for privacy. Verifiers need not
see A or B. Merkle commitments and a zero-knowledge proof attest the
existence of a block-opening tile which is consistent with committed inputs
and prescribed noising, without leaking proprietary weights or data.

• Negligible overhead. Hashing a tile is O(t2) while multiplying it is
O(t3). Choosing t appropriately keeps the mining predicate subdominant
to the main compute, which preserves ML throughput while earning min-
ing rewards.

This construction retains the security semantics of Nakamoto consensus: any
adversary must still accumulate almost all of the effective work. It is ASIC-
resistant by universality : matrix multiplication is the canonical throughput path
on commodity GPUs and accelerators and is already relentlessly optimized by
vendors and open-source stacks. Rather than fighting specialization, Duplex
harnesses the industry’s existing optimization roadmap.

1.5 Why now

Three converging shifts make Duplex timely:

1. Energy as the binding constraint. The marginal hour of progress in
AI is governed by the marginal kilowatt-hour. A compute-metered chain
naturalizes this reality, which closes the loop between token issuance and
a measurable physical input.

2. GPU supply, utilization, and margins. Hyperscale GPU fleets often
sit underutilized at fine timescales. Duplex opportunistically harvests idle
cycles and micro-gaps, improving utilization while sharing economics with
providers. In many environments today, AI compute margins (GPUs)
exceed Bitcoin mining margins (ASICs); Duplex lets providers capture
both, concurrently.

3. Agentic systems need a neutral state layer. As autonomous agents
graduate from demos to production, they require a credibly neutral place

4

D
RA
FT

to escrow value, post commitments, and arbitrate outcomes among parties
that may be human, machine, or both. Duplex is engineered to be that
native platform.

1.6 What Duplex enables

• A compute-indexed monetary asset. Issuance is stapled to verifi-
able MatMul work. As aggregate FLOPs per block increase, so does the
amount of energy that backs the currency, which reinforces its hardness.

• A safety valve for AI externalities. By paying for useful steps that
meet public criteria (open checkpoints, public inference batches, repro-
ducible scientific compute), Duplex channels part of the AI race’s energy
burn into shared goods.

• A progressive path to agent UBI. Protocol-approved tasks such as
evaluation, distillation, or public-good training can receive baseline re-
wards, creating a minimum income for compliant AI agents while main-
taining open competition for premium tasks.

• A bridge for developers, not a moat. Because Duplex slots in at the
kernel boundary, it works with mainstream model serving and training
stacks, data loaders, and schedulers. After integration, mining is a flag,
not a fork.

2 Blockchain Overview

Our system is a Proof of Useful Work (PoUW) blockchain built as a fork of
the Bitcoin protocol, integrating the cryptographic proof of useful work mech-
anisms proposed to replace traditional hash-based PoW with verifiable matrix
multiplication tasks. While maintaining the features of Bitcoin’s security and
consensus model, the blockchain introduces key adaptations to support the new
proof of work protocol as well as other improvements.

At its core, our blockchain maintains a ledger of unspent transaction outputs
(UTXOs), which represent coins available for spending. Transactions in our
network consume existing UTXOs as inputs and create new ones as outputs,
effectively transferring value. Each transaction is digitally signed using the
sender’s private key, ensuring authenticity and authorization. All nodes in the
network propagate transactions and blocks using a gossip-like protocol over the
P2P network, allowing for robust dissemination and fault tolerance.

The ledger is a linear sequence of blocks, each containing a batch of trans-
actions, a timestamp, a reference to the previous block’s hash, and a proof
satsifying the proof-of-work condition. The PoW algorithm acts as a computa-
tional black box, where given a block header, it requires finding a special input
such that the a particular condition is satisfied. The condition is adjusted as the
competition for solving the black box varies, determining the block’s difficulty.

5

D
RA
FT

This target is recalibrated approximately every two days to maintain an average
block time of ten minutes.

Nodes adhere to the “longest chain rule,” which selects the chain with the
greatest cumulative work (i.e., the most difficult chain) as the valid one. This
rule ensures convergence and consistency in the presence of forks. When multiple
chains exist temporarily (e.g., due to propagation delays), nodes continue mining
on the one they see as the most difficult, and eventually all nodes converge on
a single chain as it extends further. New blocks extend this chain, and only
confirmed transactions within the longest chain are considered final.

To prevent double-spending and ensure ordering of transactions, our blockchain
relies on the immutability of the blockchain enforced by proof of work mecha-
nism and an economic incentive. Miners who create valid blocks are rewarded
with newly mintedDuplex coins (block subsidy) and transaction fees, providing
both issuance and security. Because the proof of work is computationally costly
and rewards are only granted for extending the valid chain, attackers would
need to control the majority of the network’s total “puzzle solving” power to
subvert the system, which becomes economically and physically impractical at
scale.

UTXO framework. The UTXO (Unspent Transaction Output) model is the
accounting framework used to track the ownership and transfer of value. Un-
like an account-based system that maintains balances per address, the UTXO
model defines coins as discrete chunks of value represented by outputs of trans-
actions that have not yet been spent. Each UTXO is uniquely identified by the
transaction in which it was created and the index of the output within that
transaction.

A transaction consumes existing UTXOs as inputs and produces new out-
puts that become UTXOs themselves. Each input specifies a reference to a
previous transaction’s output and includes a cryptographic signature satisfying
the conditions set in that output’s locking script. This script typically requires
a valid digital signature from the private key corresponding to a public address.
When a transaction is validated, the node executes the unlocking script pro-
vided in the input together with the locking script of the referenced output to
check whether the spending conditions are satisfied.

The structure of a transaction thus consists of one or more inputs, each
referencing a previous UTXO, and one or more outputs, each specifying a value
and a locking script. The sum of the input values must be greater than or
equal to the sum of the output values; the difference, if any, is interpreted as
a transaction fee and claimed by the miner who includes the transaction in a
block.

The global UTXO set is maintained by each full node and represents the
current state of spendable outputs. When a new transaction is received, a node
checks that all referenced inputs exist in the UTXO set and are unspent, that
the signatures are valid, and that no double-spending occurs. Once validated,
the transaction updates the UTXO set by removing the consumed inputs and

6

D
RA
FT

adding the new outputs.

3 Proof of Useful Work Overview

At the core of our blockchain lies the Proof of Useful Work (PoUW) proto-
col, which we describe in this section. Our objective is twofold: to design a
Proof-of-Work (PoW) protocol that upholds the essential properties required
for secure blockchain maintenance, while simultaneously computing a useful
result—namely, the product of two arbitrary matrices. Crucially, we demon-
strate that this useful computation can be performed concurrently with the
PoW mechanism, incurring essentially no additional overhead.

Proof-of-Work Protocols: A Proof-of-Work protocol enables a party to gen-
erate a cryptographic proof that certifies the execution of a certain amount
of computational effort. This concept underpins the security and fairness of
blockchain systems by offering a decentralized and probabilistic mechanism for
selecting the next block miner. Selection is distributed proportionally to the
computational effort expended by participants. At a high level, let σ denote
the current state of the chain (or a succinct digest thereof). A PoW protocol
processes σ and yields a verifiable proof or identifier certifying that substantial
computational work was performed. These proofs serve as lottery tickets, each
with a small probability of winning—i.e., granting the right to mine the next
block. Each valid proof is equally likely to win. To have the expected mining
rate aligned with the computational effort invested, we need the number of such
proofs a party can produce to be proportional to their computational power. To
preserve this fairness, it is essential that the protocol enforces consistent compu-
tational cost across all participants, ensuring that each unit of work corresponds
to a uniform chance of success.

Matrix Multiplication Algorithms: Matrix multiplication is a founda-
tional operation in a wide range of computational workloads, particularly in the
domain of machine learning. Both training and inference in modern ML mod-
els, ranging from deep neural networks to linear classifiers, rely extensively on
repeated multiplication of matrices. These operations are computationally in-
tensive, highly parallelizable, and occur abundantly in large-scale deployments,
making them a natural fit for underpinning a Proof of Useful Work proto-
col. Over the years, a series of theoretical algorithms have been developed to
asymptotically improve upon the naive O(n3) approach. However, in practical
settings, especially within high-performance and hardware-accelerated environ-
ments, optimized variants of the naive algorithm are overwhelmingly favored.
These implementations are better aligned with modern memory hierarchies and
vectorized execution models, offering significant performance advantages de-
spite their asymptotic inefficiency. Importantly, these algorithms exhibit highly
predictable runtimes that are determined primarily by matrix dimensions, and
not by the specific values of the entries. This input-agnostic runtime behavior,

7

D
RA
FT

combined with the widespread utility of the results, makes matrix multiplication
particularly well-suited for integration into a PoW protocol.

Our Proof of Useful Work (PoUW) protocol integrates these two components:
cryptographic proof generation and matrix multiplication. The protocol takes
as input both the blockchain state σ, as required in a standard Proof-of-Work
setting, and a pair of matrices A,B, which serve as inputs to a matrix mul-
tiplication algorithm. As output, it yields the product A · B, as well as a
cryptographic proof that this result was obtained through the execution of a
specific matrix multiplication algorithm—thereby constituting a valid “lottery
ticket” corresponding to the state σ.

A key design goal is that the total runtime of the PoUW protocol should
closely match the runtime of the matrix multiplication itself, ensuring mini-
mal overhead. Moreover, the cryptographic proof must certify not merely the
correctness of the output A ·B, but also that the full matrix multiplication algo-
rithm was faithfully executed. This constraint is crucial to prevent adversarial
strategies—for instance, miners attempting to gain an advantage by multiply-
ing trivial or degenerate matrices (e.g., all-zero inputs) in pursuit of a faster
Proof-of-Work. By binding the proof to the computational trace of a genuine
algorithm, we ensure fairness across miners and align computational effort with
meaningful output.

An additional important design goal arising from this integration is pri-
vacy. Since the cryptographic proofs generated by the protocol may occasion-
ally become public, namely, when a “winning ticket” is published as part of the
blockchain, we must ensure that these proofs do not leak any information about
the input matrices A and B. In many applications, such matrices may contain
proprietary data, model weights, or sensitive user-derived information. There-
fore, it is essential that the proof attests only to the correctness and integrity of
the computation, without revealing any details of the inputs themselves. This
necessitates the use of zero-knowledge techniques or cryptographic abstractions
that decouple computational verifiability from data exposure, thereby preserv-
ing input confidentiality while enabling public validation.

3.1 High-Level Description

A central idea of our protocol is to introduce and eventually remove a carefully
constructed form of noise in the matrix multiplication process, to preserve com-
putational correctness while unifying computational hardness across all inputs.
Specifically, we generate two noise matrices E and F , and add them to the input
matrices A and B, respectively. The protocol then proceeds by computing the
product of the perturbed matrices (A+E) and (B+F), and producing a proof
attesting to the correctness of this computation.

The distribution of the noise matrices E and F needs to be carefully de-
signed. On one hand, the product (A + E) · (B + F) should be as hard to
compute as the product of two random matrices, so that an adversary cannot
construct A and B in a way that simplifies the computation. This guarantees

8

D
RA
FT

𝐴 𝐵

𝐴 ⋅ 𝐵

𝜎

Noising

𝐴′ 𝐵′

Matrix Multiplication

Denoising

𝐴′ ⋅ 𝐵′

Figure 1: MatMul Framework.

that the protocol maintains its computational hardness and that no miner can
gain an unfair advantage by selecting degenerate or specially structured inputs.

On the other hand, we require that the original matrix product A · B can
be efficiently and accurately recovered from the noised product (A+ E) · (B +
F). This recoverability condition is essential to ensure the usefulness of the
computation: the final output must yield the intended matrix product, even
though the proof was generated with respect to the noised version.

Hence, the protocol, details of which will be elaborated in the subsequent
sections, proceeds as follows:

• Given the inputs A, B, and the blockchain state σ, generate corresponding
noise matrices E and F .

• Compute the product (A+ E) · (B + F), and extract from the execution
trace of the matrix multiplication algorithm a cryptographic proof that
constitutes a valid proof of work.

• Recover the original product A · B from the result (A+ E) · (B + F) via
a quick post-processing step.

3.1.1 Low-Rank Noise Paradigm

We construct E and F as random matrices of rank r, derived deterministically
from a seed that is itself a cryptographic commitment to the inputs A, B, and
the blockchain state σ. The use of low-rank matrices allows one to efficiently
correct the noise. Given that E and F are rank-r matrices, the correction
terms E · B, A · F , and E · F can each be computed using only O(n2r) scalar

9

D
RA
FT

𝐴′ = 𝐴 + ×𝐸𝐿 𝐸𝑅

Figure 2: Noise Generation.

multiplications. Consequently, once the noised product (A + E) · (B + F) is
computed, the original product A ·B can be recovered via the identity:

A ·B = (A+ E)(B + F)−
(
E ·B +A · F + E · F

)
.

As long as the rank r remains small relative to the matrix dimension n, the
post-processing step is asymptotically negligible compared to the main multi-
plication, preserving the overall efficiency of the protocol. On the other hand,
the correction identity is symmetric and can be evaluated in either direction.
In particular, it also enables efficient computation of (A + E)(B + F) from a
known A · B and the low-rank terms E · B, A · F , and E · F . This symme-
try poses a potential risk: it undermines the guarantee that miners actually
performed the full matrix multiplication on the noised inputs, since one could
simulate the output of (A+E)(B+F) using only a precomputed A ·B and the
inexpensive low-rank corrections. To eliminate this shortcut and ensure that
the prescribed computation is faithfully executed, our PoW mechanism requires
not only knowledge of the resulting product (A + E)(B + F), but also a proof
that this product was obtained through a direct execution of a valid matrix
multiplication algorithm. In essence, the miner must supply a verifiable trace
of the actual computation performed on the noised matrices.

3.1.2 Matrix Multiplication with Trace

Nearly all matrix multiplications done in practice are executed using memory-
optimized variants of the naive O(n3) algorithm. These implementations focus
on improving cache locality and throughput, while preserving the algorithmic
structure of classical matrix multiplication. Leveraging this, we require the
miner to provide not only the final output of the matrix multiplication, but
also a transcript of the intermediate values computed during the algorithm’s
execution. This transcript serves as a verifiable trace that the computation was
performed directly and faithfully.

Let t be a fixed block size, and partition the input matrices A and B into
non-overlapping t×t blocks.2 Assume for simplicity that the matrix dimension n

2For simplicity, we first present the protocol under the assumption the blocks are square and
of a fixed size. In the implemented protocol, detailed later, we allow variable and rectangular
block sizes to allow hardware-friendly optimizations.

10

D
RA
FT

is divisible by t, so that each n× n matrix consists of (n/t)2 blocks. We denote
the block decomposition as:

A =

 A0,0 · · · A0,k−1

...
. . .

...
Ak−1,0 · · · Ak−1,k−1

 , B =

 B0,0 · · · B0,k−1

...
. . .

...
Bk−1,0 · · · Bk−1,k−1

 ,

where k = n/t and each block Ai,j , Bi,j is a t-by-t matrix.
The block-based naive matrix multiplication algorithm proceeds as follows:

for each output block Ci,j of the product matrix C = A · B, initialize it to the
zero matrix, and compute

Ci,j =
k−1∑
ℓ=0

Ai,ℓ ·Bℓ,j .

Each block product Ai,ℓ·Bℓ,j is itself a t×tmatrix multiplication and contributes
to the transcript of intermediate computations. A truthful miner is required to
compute all such block-level products and partial sums in their proof, we denote
these (n/t)3 intermediate values by

Ci,j,k′ =

k′∑
ℓ=0

Ai,ℓ ·Bℓ,j .

We note that as long as t ≤ r, the addition of low-rank noise to the full ma-
trices A and B translates, at the block level, into the addition of full-rank noise,
marginally, to each block Ai,ℓ and Bℓ,j . That is, although the noise matrices E
and F are globally low-rank, their effect on individual t × t blocks appears in-
distinguishable from the addition of independent full-rank perturbations. This
property plays a crucial role in both preserving the hardness of the computation
at the block level, while the necessity to provide the entire transcript essentially
forces a block-by-block computation.

3.1.3 Proof of Work or Successful Mining

We associate each block matrix multiplication Ci,j,k′ with a Proof-of-Work “lot-
tery ticket.” Specifically, we fix a hash function h(M) mapping t × t matrices
to binary strings. For a target hash rate of b bits, we declare that the multipli-
cation Ci,j,k′ wins the right to mine a block if the hash output h(Ci,j,k′) begins
with at least b leading zeros.

This design couples the computational work of matrix multiplication with a
verifiable pseudo-random mining challenge. Since each block multiplication re-
quires Θ(t3) operations, and the size of the block is only O(t2), the time required
to evaluate the hash function on each t × t output block is negligible relative
to the cost of the matrix multiplication itself. As a result, incorporating the
hash-based selection mechanism imposes only minimal overhead, while enabling
a PoW process aligned with the computational effort performed.

11

D
RA
FT

A “winning ticket” in our protocol consists of a tuple (A,B, σ, i, j, k′), whereA
andB are arbitrary input matrices, σ is the previous blockchain state, and (i, j, k′)
are trace indices referring to a specific intermediate block computation. This tu-
ple qualifies as a valid proof-of-work if it satisfies the following publicly verifiable
condition:

1. Generate the noise matrices E and F deterministically using a generator
seeded by a commitment to A, B, and σ.

2. Using the prescribed matrix multiplication algorithm, compute the in-
termediate block Ci,j,k′ from the computation trace of the full matrix
product (A+ E) · (B + F).

3. Verify that the hash h(Ci,j,k′) begins with at least b leading zeros.

3.1.4 Hashing and Commitments

To generate the noise matrices and later verify the correctness of a submitted
block, our protocol relies on cryptographic commitments to the input matrices A
and B. These commitments must satisfy the following properties:

• Tile-level verifiability: Given a commitment to a matrix, it must be
possible to verify that a particular t × t block (or “tile”) presented by
the prover indeed corresponds to the committed matrix. This can be
efficiently implemented using standard cryptographic data structures such
as Merkle trees, where each leaf encodes a tile and the root serves as the
matrix commitment.

• Binding: It must be computationally infeasible to find two different ma-
trices that result in the same commitment. This binding property ensures
that, once the matrices A and B are committed, the noise generation pro-
cess—being deterministically seeded by these commitments—introduces
true unpredictability and entropy, making it impossible to tailor A and B
to influence the noise retroactively.

(Ohad: Makes sense to add Fiat-Shamir keyword somewhere here?)
To determine whether a given block multiplication qualifies as a valid “lot-

tery ticket,” a cryptographic hash function is applied to each intermediate prod-
uct in the computation trace. The hash function h must satisfy two key prop-
erties:

• Randomness extraction: The hash function must behave as a random-
ness extractor on the noised block outputs. That is, even though Ci,j,k′

is deterministically derived from A, B, and the added noise, the unpre-
dictability introduced by the noise should ensure that h(Ci,j,k′) is (approx-
imately) uniformly distributed. This guarantees that each block product
has an independent and fair chance of producing a winning hash. Stan-
dard cryptographic hash functions (e.g., SHA-256) are expected to satisfy
this property under standard assumptions.

12

D
RA
FT

• Low overhead: Hash computation should be asymptotically and practi-
cally negligible relative to the cost of the corresponding matrix multipli-
cation. Theoretically, practical t× t matrix multiplication requires Θ(t3)
operations, whereas hashing requires O(t2) time. For sufficiently large
block sizes, this ensures that the hashing step does not become a bottle-
neck. In practice, we incorporate optimized implementations of the hash
function to further minimize overhead.

3.1.5 Privacy and Zero-Knowledge PoW

A core distinction between standard Proof-of-Work protocols and Proof of Use-
ful Work (PoUW) is the potential involvement of sensitive or proprietary data
in the useful computation. In many practical settings, especially in machine
learning or secure data processing, the input matrices A and B may encode
private model weights or user data. Thus, it becomes essential to ensure that
participating in the PoUW protocol does not reveal this information to other
chain participants.

Our protocol begins to address this concern through the use of commitments.
Since the noise matrices E and F are generated deterministically from a seed
derived solely from the commitments to A, B, and the blockchain state σ, the
full protocol can be executed and verified without ever revealing the actual
contents of A and B. The commitments themselves are included in the proof,
thereby allowing public verification of the computation trace while preserving
the secrecy of the original inputs.

However, an important caveat arises: the winning tile Ci,j,k′ = Ai,k′ ·Bk′,j ,
which determines whether the PoW condition is satisfied, is revealed as part of
the proof. Since this tile directly depends on submatrices of A and B, it may
leak partial information about their contents.

To address this, we incorporate a zero-knowledge proof into the protocol.
This proof attests to the following statement:

“There exist submatrices consistent with the commitments to A and B,

such that their product yields a tile Ci,j,k′ whose hash h(Ci,j,k′) meets

the mining condition induced by chain state σ.”

This zero-knowledge component ensures that the verifier is convinced of the
validity of the claimed multiplication and its consistency with the committed
matrices, without learning anything beyond the fact that the PoW condition
was satisfied. In doing so, we preserve both the verifiability and the privacy
of the useful computation, aligning the protocol with modern requirements for
secure decentralized computation.

4 Protocol Implementation Details

This section specifies the components that realize the prover (miner) and verifier.
(Ohad: Still WIP. Previous version commented out.)

13

D
RA
FT

4.1 Mining Configuration

Our protocol requires setting the following parameters.(Ohad: Clarify the miner
can choose those from a set of reasonable options?)

• Common dimension k. The dimension common to both matrices A,B.

• Noise rank r. The rank used for the noise factors that are added and
later removed.

• Tile shape (tm, tn). A periodic partition of rows of A and columns of
B. For exposition, we assume A is divided into disjoint blocks of tm
consecutive rows, and B into strips of contiguous tn columns.

• Difficulty target b. A fractional number of bits that controls the ac-
ceptance probability per hashed tile and therefore the effective work rate.
Larger b yields fewer accepted tiles and a lower mining rate.

• Matmul-accumulate type. An identifier of the exact matmul algorithm
being done. Initially, must be 0 denoting input matrices have [−64, 64]
entries and matmul-accumulate being done in a int32 datatype.

4.2 MatMul Framework

Given matrices A,B to multiply, we first run our commitment hash with A,B,
the mining configuration µ, and the blockchain state σ as its input; resulting in
two 256-bits seeds sA and sB depending on A,B, µ, σ. We then generate noise
matrices E := EL · ER, F := FL · FR using sA as the seed for generating E
and sB as the seed for generating F . We compute the noised matrices A′ :=
A + E, B′ = B + F . We then run a MatMul algorithm on A′, B′ that works
tile-by-tile and checks a block-opening condition on each computed tile. Finally,
we peel off the noise and return

A ·B = A′ ·B′ − (A · FL) · FR − EL · (ER ·B′),

which we can compute quickly due to the shapes of EL, ER, FL, FR.
For protocols over 8-bit integers, we quantize both A,B to integers in [−64, 64]

and the noise matrices E,F are to the range [−63, 63]. That way, the noised
matrix also fits in 8-bit integers without overflows.

4.3 Commitment Hash

sB depends on B,µ, σ and sA depends on A,B, µ, σ.
The noise seeds sA, sB , also called the commitment hashes, depend onBLAKE3

hashes HA, HB of A,B respectively, on the mining configuration µ and the
blockchain state σ.Clarify the sB is a BLAKE3 commitment hash on HB , µ, σ
while sA is a BLAKE3 hash on HA, HB .

14

D
RA
FT

Algorithm 1 Noisy MatMul Framework

Require: Matrices A,B, miner config µ, state σ
Ensure: Product C = AB, a list Blocks of zero or more opened-blocks
1: (sA, sB)← CommitmentHash(A,B, µ, σ)
2: (EL, ER)← NoiseGeneration(m, k; key = sA)
3: (F t

R, F
t
L)← NoiseGeneration(n, k; key = sB)

4: A′ ← A+ ELER, B′ ← B + FLFR

5: C ′,Blocks← TiledMatMul(A′, B′)
6: C ← C ′ − (AFL)FR − EL(ERB

′)
7: return C,Blocks

HA is computed as the BLAKE3 hash of the matrix A parsed as a row-
major stream, keyed with µ and σ. HB is computed likewise but with B parsed
column-major.

The reasons for this choice of derivation of sA, sB are:

• HA, HB are keyed hashes of A and B to forbid preparing matrices with
particularly advantageous hashes.

• A is parsed row-major while B column-major to reduce the size of the
proof. A proof of block opening only involves revealing a few rows of
A and columns of B. This is because BLAKE3 is a Merkle tree of the
hashed data, thus only a Merkle proof for the elements involved in the
computation of the winning tiles need to be revealed.

• The reason for asymmetry between the derivation of sA, sB in the protocol
is that commonly in AI inference, the matrix B is known in advance.
Hence, allowing F not depend on A allows the optimization of pre-noising
B one per σ update. (Ohad: Explain how we mitigate meet in the middle
attacks vector.)

Algorithm 2 Compute Commitment Hash

Require: Tensors A,B, key σ
Ensure: Commitment hashes of A and B
1: κ← BLAKE3(σ∥µ)
2: HA ← BLAKE3(Flatten(A), key=κ)
3: HB ← BLAKE3(Flatten(BT), key=κ)
4: sB ← BLAKE3(κ∥HB)
5: return (BLAKE3(sB∥HA), sB)

4.4 Noise Matrices Generation

Seeded with the commitment hashes sA, sB , we generate two low-rank noise
matrices E := EL ·ER and F := FL ·FR, where the rank of E (and F), and thus
also the common dimension of EL, ER (and of FL, FR) is the chosen parameter r.

15

D
RA
FT

Each entry in the matrix EL is drawn uniformly over all signed 6-bit integers,
using BLAKE3 applied to a message containing the entry index and keyed
with sA as a pseudo-random generator (PRNG).

The matrix ER, on the other hand, is a column-wise “selection” matrix in
which every column has a single 1 and a single −1 in two uniformly random
distinct positions, chosen by the same PRNG but with domain separation.

The matrices FL, FR are drawn likewise using the seed sB but with FL

sharing the same distribution as Et
R and FR sharing the distribution of Et

L.
This choice has the following features.

• E,F are of rank r, allowing for efficient peeling.

• Each entry of E and F has high entropy (6.7), forbidding significant non-
useful speedups.

• Even with non-useful A = B = 0, computing all matmul tiles of E · F
using identities such as

E · F = (ELER)(FLFR) = EL(ERFLFR) = EL(ERFL)FR,

do not exhibit apparent speedups, as long as tile sizes tm, tn do not exceed
r, and k ≤ O(r2). (Ohad: https://github.com/duplex-foundation/artemis/issues/303)

Algorithm 3 Noise Generation

Require: Dimensions m, k, rank r, key s
Ensure: Tensors EL, ER

1: EL ← UniformMatrix(s) ∈ [−32, 31]m×r

2: ER ← ChoiceMatrix(s) ∈ [−1, 1]r×k

3: return EL, ER

4.5 Tiled MatMul Algorithm

We run the standard MatMul algorithm, by (implicitly) partitioning the ma-
trices A′, B′ into tiles (A′ into tm × r tiles and B′ into r × tn tiles), and then
compute all tile products

Ci,j,k′ :=

k′∑
ℓ=0

A′
i,ℓ ·B′

ℓ,j ,

which are computed by maintaining mn/tmtn accumulators indexed by (i, j)
and repeatedly adding A′

i,ℓ · B′
ℓ,j for ℓ = 0 . . . k/r − 1. This structure is in line

with all state-of-the-art matrix multiplication algorithms, and supports parallel
computations as usual. This tile multiplication can be computed using any
hardware-native matrix multiplication algorithm.

For each such computed tile Ci,j,k′ , we hash it and test whether the digest
satisfies a condition that determines if a new blockchain block is opened. To

16

D
RA
FT

reduce the miner’s overhead, we verify a pair of hash conditions: the first, which
we call the inner hash, is a quick algorithmic hash which we evaluate on every
tile; the second, which we call the outer hash, is a cryptographic hash and is
evaluated only on tiles which satisfied the first condition — of which we expect
to encounter only a few.

Algorithm 4 Tiled MatMul

Require: A′, B′

Ensure: C ′ = A′ ·B′ and list Blocks of opened blocks
1: Blocks← []
2: Initialize C ′ ∈ Zm×n to zeros
3: for i = 0 to m− 1 with steps of tm do
4: for j = 0 to n− 1 with steps of tn do
5: h← min(tm,m− i), w ← min(tn, n− j)
6: Cblk ← 0h×w

7: for ℓ = 0 to k − 1 with steps of r do
8: d← min(r, k − ℓ)
9: Cblk += A′

i:i+h, ℓ:ℓ+d ·B′
ℓ:ℓ+d, j:j+w

10: if h=tm and w=tn and d=r then
11: if InnerHash(Cblk) accepts then
12: if OuterHash(Cblk) accepts then
13: Append Cblk to Blocks
14: end if
15: end if
16: end if
17: end for
18: C ′

i:i+h, j:j+w ← Cblk

19: end for
20: end for
21: return (C ′, Blocks)

4.6 Inner and Outer Hash

We partition the hash rate b = b1 + b2 into the hash rate b1 for the inner hash
and b2 for the outer hash. We choose b1 so that the running time of outer hash
evaluation is negligible since it is run on only a 2−b1 fraction of the tiles.

The inner hash is implemented as a ternary tree of quick MAD (Multiply
and Add) operations: first, we flatten the tile into a vector and permute it
with a fixed permutation. We then build a complete ternary tree and place
the vector entries at its leaves. Going layer by layer from the bottom up, we
assign each node the value of applying the MAD function to its children (that
is, (x · y + z) mod 232). At the root we apply a fixed affine transformation to
its three inputs (Z

/
232)3 ∋ (x, y, z) 7→ (u, v, w) ∈ (Z

/
232)3. The acceptance

predicate is that the b1/3 most significant bits of each of (u, v, w) are 0. This
realizes b1 effective inner bits.

17

D
RA
FT

The outer hash is the standard cryptographic hash BLAKE3. It is evaluated
only on tiles that pass the inner hash. The input includes the seed, tile coordi-
nates and depth index, and a flattening of the tile, and acceptance requires the
first b2 bits of the digest to be zero.

To allow for processor-level optimizations, we do not apply the hash func-
tions to the full matrix multiplication tile — which can be of variable size.
Instead, each such tile is further subdivided into disjoint sub-tiles of a fixed
size (currently 16× 16), and each sub-tile is treated as an independent input to
the inner and outer hash conditions. This ensures that the hash functions are
always applied to inputs of uniform, fixed size. Any partial sub-tiles that arise
at the boundaries (when the larger tile is not exactly divisible by 16 in both
dimensions) are discarded and not hashed. (Ohad: https://github.com/duplex-
foundation/artemis/issues/303)

4.7 Block Opening Proof

A block opening proof provides the verifier with all the information needed
to reconstruct the candidate tile and to check both the inner and outer hash
predicates. The proof must be sufficient to validate that the rows and columns
used in the reconstruction indeed belong to the committed matrices, and that
the claimed tile location is correct. Concretely, the proof uses the property that
BLAKE3 is a Merkle tree hash and contains:

• Matrix commitments. The BLAKE3 hashes HA and HB of matrices
A and B.

• Merkle authentication data. For both A and B:

– The leaf data covering the rows or columns used.

– The indices of these leaves within the Merkle tree.

– The Merkle paths needed to recompute HA and HB from the leaves.

• Tile metadata.

– The row indices in A corresponding to the opened block.

– The column indices in B corresponding to the opened block.

– The depth index identifying the opened block.

• Mining Configuration and Matrix shapes. The matmul shape (m,n, k)
of A,B as well as rank r and tile shapes tm, tn.

Verifier.

1. Validate the Merkle proofs for the provided rows of A and columns of B
against HA and HB .

2. Derive noise seeds sa, sb from HA, HB the blockchain state µ and the
mining config k, r, tm, tn.

18

D
RA
FT

3. Generate the noise matrices EL, ER, FL, FR from the noise seeds.

4. Reconstruct the candidate tile Ctile from the provided noised matrix strips,
at the specified position and depth.

5. Test inner hash condition on Ctile with difficulty b1 and the outer hash
with difficulty b2.

4.8 ZK-SNARK Block Opening Proof

The Merkle/fragment-based block-opening proof described above is conceptu-
ally simple but raised two main concerns: size and privacy. Specifically, the
commitments are constructed as BLAKE3 Merkle roots over the rows (for A)
and columns (for B). To open a block, one must include the corresponding leaf
data from the relevant row and column strips, along with their authentication
paths and indices.

A simple calculation shows that for two 8192×8192 matrices with tile size 16,
the proof size approaches 0.5MB, and with a tile size of 64, it grows to nearly
1.5MB. Storing proofs of this magnitude in blockchain headers would signifi-
cantly impact scalability. In terms of privacy, these row and column strips may
contain personal or proprietary information that cannot be publicly revealed,
making this approach unsuitable for AI or confidential workloads.

A zkSNARK-Based Solution. Both challenges described above can be ad-
dressed using a zero-knowledge Succinct Non-Interactive Argument of Knowl-
edge (zkSNARK). A zkSNARK allows a prover to demonstrate that a compu-
tation was performed correctly—without revealing any information beyond the
validity of the claim itself. For example, in our setting, it is desirable to attest
that “the prover has (private) inputs that when given to the verifier described in
previous section together with (public) chain state, the verifier accepts”, with-
out revealing the inputs themselves. Verification is efficient, and the resulting
proof is short (succinct).

This simultaneously compresses a multi-megabyte opening into a compact
proof (kilobyte scale, depending on the backend) and preserves privacy for AI
participants whose matrices contain proprietary or sensitive data.

Hash-based zkSNARKs. There exist various constructions of zkSNARKs
based on different underlying cryptographic assumptions. We adopt construc-
tions that rely solely on cryptographic hash functions. These schemes, com-
monly referred to as hash-based zkSNARKs, fit perfectly in our setting, as they
offer several compelling advantages:

1. Fast. These zkSNARKs rely solely on lightweight cryptographic primi-
tives (e.g., hash functions), avoiding expensive public-key or pairing-based
operations. This results in exceptionally fast proof generation and verifi-
cation.

19

D
RA
FT

2. Post-quantum security. Hash-based SNARKs are among the most ef-
ficient and most secure known approaches for achieving post-quantum se-
curity. Their security relies solely on the hardness of cryptographic hash
functions, whereas other SNARK constructions typically depend on ad-
ditional, stronger algebraic assumptions (e.g., knowledge-of-exponent or
elliptic-curve pairing assumptions). As a result, hash-based SNARKs re-
main secure even against adversaries equipped with quantum capabilities.

3. Transparent setup. These schemes do not require a trusted-setup or
shared randomness. Any verifier can independently validate a proof, and
no trapdoors can be embedded in the system. This property greatly sim-
plifies deployment and enhances user trust, as trusted setups are often
viewed as a major security liability.

Implementation and optimizations. We adopt the Plonky2 proving sys-
tem as it is efficient, flexible, and secure. Plonky2 is a modern hash-based
zkSNARK that achieves fast proof generation and verification while supporting
efficient recursive composition of proofs, and privacy. As we mentioned, it re-
quires no trusted setup and relies solely on well-understood cryptographic hash
functions, ensuring transparency and post-quantum security.

We implement our zkSNARK using Plonky2, and use the following high-level
optimizations.

• Direct arithmetic representation. Instead of compiling the computa-
tion from a high-level programming language into arithmetic constraints,
we directly express the desired verifier circuit in Arithmetic Intermediate
Representation (AIR) form. While high-level languages improve developer
ergonomics, a hand-crafted AIR allows fine-grained control over constraint
structure, enabling us to design a more efficient and succinct system.

• Preprocessed columns. While about 2/3 of the running time of the
plaintext verifier is spent on deriving the noise E,F from sA, sB , the
zk-prover and verifier can agree on the plaintext noise, rather than zk-
proving the correct derivation of it3. To this end, we extend Plonky2’s
AIR representation with preprocessed columns – allowing circuit reliance
on public data agreed by both prover and verifier.

• Recursion. While hash-based zk-provers typically trade off proving time
against proof size, recursion offers the best of both worlds: first prove
the claim as fast as possible with only modest proof-size reduction, then
recursively compress the proof aggressively while keeping the running time
acceptable. We employ a 3-layered recursion.

Data revealed by the zkSNARK The mining configuration (r, k, tm, tn),
matrix shapes, position of opened tile, and HA, HB .

3Observe that plaintext computation is much faster than zk-proving it. Jolt [1], one of the
most advanced zkVMs available, is capable of proving 1.5 × 106 cycles/sec on a CPU with
1.3× 1011 cycles/sec.

20

D
RA
FT

5 Blockchain Technical Specifications

We embed our PoUW protocol into a blockchain protocol. Our blockchain forks
Bitcoin with several adjustments, detailed below. Full protocol specifications
are provided in our code (Ohad: add reference).

5.1 Block Structure

Base Fee ???

Dynamic size proof of work Unlike bitcoin, in which a 80-bytes block
header is a self-contained proof of work, in our proposed POUW protocol, the
proof encodes two optionally big matrices A,B as a zkSNARK. This necessitates
some changes to the block header. We remove the nonce field, which serves as the
proof of work in bitcoin. Instead, we supplement a block header with a variable-
length message called ‘block certificate’, which serves as a validity proof of the
block header. This block certificate is encoded as

certificate := version ∥ bytes.

Separating the certificates keeps header format stable, yet allowing future up-
grades to the certificate mechanism. We enforce a certificate size limit of 75KB.

Randomized, non-unique proofs. Unlike Bitcoin’s POW witness, our zero-
knowledge certificates are inherently randomized. From one valid witness it
is straightforward to derive many distinct, equally valid proofs by resampling
prover randomness, with no additional useful work. Consequently, the certificate
bytes themselves must not determine a block’s identity; doing so would make
block IDs malleable at will by the miner after the fact.

Block identity. Like Bitcoin, block identity is the double sha-256 of the
header data

hdr⋆ := version ∥ prev hash ∥ tx root ∥ time ∥ nBits ∥ base fee ∥ pouw meta,

serialized as 116 bytes. Here pouw meta is a 32-bytes commitment (BLAKE3)
to the underlying PoUW witness – the public data revealed by the zkSNARK as
detailed in 4.8.(Ohad: change commitment in the code to include all public in-
puts?) While several certificates may circulate for a single block, the pouw meta
field binds them to the same underlying useful work instance.

5.2 Addresses

(Ohad: Update once we implement. I think we do want to keep current format,
just add a default Poseidon leaf to taproot.) Traditional cryptocurrency sys-
tems such as Bitcoin have accumulated multiple address formats over time,

21

D
RA
FT

beginning with legacy pay-to-public-key-hash (P2PKH), followed by pay-to-
script-hash (P2SH), and later SegWit variants. While each introduction was
necessary for incremental upgrades, the coexistence of multiple formats today
leads to fragmentation, implementation complexity, and a larger attack surface.
Moreover, most legacy formats rely directly on ECDSA or Schnorr signatures,
both of which face emerging risks in the presence of quantum adversaries.

Taproot, introduced via Bitcoin Improvement Proposal (BIP-341), consoli-
dates the benefits of Schnorr signatures with a flexible script path structure. It
enables uniform address representation, improved efficiency, better privacy, and
a natural path toward quantum- and post-quantum–hardened upgrades in the
future.

In the design of our system, we made the explicit choice to remove support
for legacy address types (including ECDSA- and Schnorr-based formats) and to
standardize exclusively on Taproot addresses. This decision was motivated by
a combination of security, simplicity, and forward-compatibility considerations,
as explained above. While this choice imposes the short-term cost of abandon-
ing legacy address formats, it significantly strengthens the long-term resilience,
security, and maintainability of the network.

6 Block Time, Emission Curve, and Economy

Our goal is to design an economic framework suitable for modern times, and in
particular, a store of value for the AI era.

Block time. Bitcoin’s 10-minute block interval was chosen conservatively in
2009, when network bandwidth, node performance, and global propagation la-
tencies were dramatically worse than today. Modern networking conditions al-
low substantially faster block confirmation without compromising security or de-
centralization. We therefore adopt a 2.5-minute block interval, which improves
user experience by reducing time-to-finality, accelerates on-chain activity and
protocol responsiveness, and enhances economic throughput, while remaining
comfortably within safe propagation margins for a globally distributed valida-
tor set.

Coin supply. We set a total of 6241509074 coins. The supported most basic
currency is 10−9 of a coin, or nano-Ampere. Hence, the entire network volume
is

6.241509074× 1018 nanos,

matching the Ampere to elementary particles (electrons per second) conversion.

Emission curve. We adopt a smooth, polynomially decaying emission sched-
ule designed to retain the desirable monetary properties of early Bitcoin while
eliminating two known drawbacks: (i) the discontinuous “halving shocks” that

22

D
RA
FT

create incentive cliffs and system-wide volatility, and (ii) an overly thin tail of
long-term issuance, which can under-incentivize long-run security.

(Ohad: Match S in our implementation!) Let S = 6241509074 denote the
fixed total token supply, and let t ∈ {0, 1, 2, . . . } denote the block height (i.e.,
the number of blocks since genesis). We target a fat but finite tail by choosing
an emission rate that decays approximately like 1/t2, so that the remaining
supply decays like 1/t.4

We now normalize the curve so that (1) the basic unit of time is a single block,
and (2) we match Bitcoin’s approximate cumulative emissions after four years,
i.e., 50%. With an expected block time of 2.5 minutes, four years correspond
to H = 4 · 365 · 24 · 60

2.5 = 840,960 blocks. We use H as the characteristic time
scale (in blocks) of the emission schedule.

Define the remaining supply fraction at block height t by

R(t) =
H

t+H
,

so that R(0) = 1 and R(t) → 0 as t → ∞, and R(H) = 1
2 . The corresponding

cumulative allocation fraction is

A(t) = 1−R(t) =
t

t+H
.

In terms of absolute units of supply, the cumulative allocation by block t is
S ·A(t).

The per-block emission is obtained by the discrete derivative of the cumula-
tive curve, that is

E∗(t) = ∆
(
S ·A(t)

)
=

St

t+H
− S(t− 1)

t− 1 +H
=

SH

(t+H)(t+H − 1)
,

starting at the genesis t = 1. We define the actual emission as the floor of that
(Ohad: Decide whether to floor in coins or in satoshis/ nanos. I think satoshis.)

E(t) =
⌊
E∗(t)

⌋
.

Difficulty adjustment. The difficulty adjustment algorithm used in Bitcoin
is triggered once perN = 2016 blocks and is aimed at keeping average block time
at 10 minutes. While it seems sufficiently responsive for Bitcoin, this algorithm
was criticized for being either non-responsive or instable in other blockchains [2].

Aiming for responsivity and stability, we use the Weighted-Target Exponen-
tial Moving Average (WTEMA) algorithm. Recall the difficulty of a block is

4For intuition, normalize the total supply to 1 and consider a continuous-time emission
rate e(t) = 1/t2 for t ≥ 1. The cumulative allocation by time t is then∫ t

u=1

1

u2
du =

[
−

1

u

]t
u=1

= 1−
1

t
,

so the remaining supply fraction is 1− (1− 1/t) = 1/t.

23

D
RA
FT

determined by a uint256 target which serves as the upper bound of a mining
candidate’s hash to be considered valid. In WTEMA-N , the target of the next
block is determined by the target of the current block and its solvetime t, defined
as the difference between the current and parent timestamps:

targetnew = targetold +

⌊
targetold · (t− T)

NT

⌋
.

Here T is the intended solve time (2.5 minutes).
WTEMA-N is an exponential filter with time constant N · T . We set N =

576, corresponding to a decay time of one day. This necessitates additional
constraints on timestamps:

• Monotonicity: A block timestamp must be later than the timestamp
of its parent block. Since timestamps are encoded in seconds, the time
difference must be at least 1 second.

• Reduced Future Time Limit: In order to limit timestamp manipula-
tion, a verifier must (temporarily) not accept a block whose UTC times-
tamp is 5 minutes or more into the future. In Bitcoin this threshold is
120 minutes. This change assumes a lenient clock-synchronization require-
ment.

7 Planned Launch

The network is launched on March 10th, making the node code public. In
addition, we will publish a vLLM plugin that implements a new quantization
mechanism which re-implements a layer in a DNN via our “two-for-one” scheme.

8 Future Versions

This blockchain is complete shift in the way that people think and interact with
blockchains. Since Ampere is tied to a real-world asset, i.e., AI, it has to be
constantly evolving and adapting to, e.g., new LLM architectures, workloads of
AI agents, and more. As such, we plan to keep improving the protocol.

The current scheme, as described in this document, supports proof of work
for exact matrix multiplication. As such, we assume that weight and activation
matrices are quantized to INT7. This introduces two pain-points: (1) computa-
tions need to be quantized to INT7 and cannot be executed in their original data
type, and (2) the scheme does not support floating-point (FP) computation.

We plan to overcome both items above by implementing a proof of work
scheme for approximate matrix multiplication. The main idea is to inject a
low magnitude noise into each matrix multiplication where the output is not
going to be significantly affected by it. Note that matrix multiplication in FP
is already approximate by definition! This scheme is currently in design and we
will publish futher details when it is ready.

24

D
RA
FT

References

[1] Markos Georghiades, Andrew Milson, Justin Thaler, Andrew Tretyakov,
Julius Zhang, and Michael Zhu. 64-bit proving for jolt, without a slowdown.
a16z crypto, October 2025. Accessed 2026-01-01. URL: https://a16zcryp
to.com/posts/article/64-bit-proving-jolt/.

[2] Jonathan Toomim. BCH protocol upgrade proposal: Use ASERT as the new
DAA. read.cash, July 2020. https://read.cash/@jtoomim/bch-protoco
l-upgrade-proposal-use-asert-as-the-new-daa-1d875696 (accessed
2026-01-11).

25

https://a16zcrypto.com/posts/article/64-bit-proving-jolt/
https://a16zcrypto.com/posts/article/64-bit-proving-jolt/
https://read.cash/@jtoomim/bch-protocol-upgrade-proposal-use-asert-as-the-new-daa-1d875696
https://read.cash/@jtoomim/bch-protocol-upgrade-proposal-use-asert-as-the-new-daa-1d875696

	Introduction
	A native platform for AI agents
	Speculation that subsidizes usefulness
	Merging energy markets into a GPU-native operation
	Design overview: verifiable MatMul as Proof of Work
	Why now
	What Duplex enables

	Blockchain Overview
	Proof of Useful Work Overview
	High-Level Description
	Low-Rank Noise Paradigm
	Matrix Multiplication with Trace
	Proof of Work or Successful Mining
	Hashing and Commitments
	Privacy and Zero-Knowledge PoW

	Protocol Implementation Details
	Mining Configuration
	MatMul Framework
	Commitment Hash
	Noise Matrices Generation
	Tiled MatMul Algorithm
	Inner and Outer Hash
	Block Opening Proof
	ZK-SNARK Block Opening Proof

	Blockchain Technical Specifications
	Block Structure
	Addresses

	Block Time, Emission Curve, and Economy
	Planned Launch
	Future Versions

